Aims: To evaluate the in vitro effects of extremely low-frequency magnetic field (ELF-MF) on growth and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia strains from cystic fibrosis patients. Materials & methods: The motion of selected ions (Fe, Ca, Cu, Zn, Mg, K, Na) was stimulated by the ion resonance effect, then influence on growth and biofilm formation/viability was assessed by spectrophotometry or viability count. Results: Generally, exposure to ELF-MF significantly increased bacterial growth and affected both biofilm formation and viability, although with differences with regard to ions and species considered. Conclusion: Exposure to ELF-MF represents a possible new approach for treatment of biofilm-associated cystic fibrosis lung infections.
Exposure to extremely low-frequency magnetic field affects biofilm formation by cystic fibrosis pathogens
Bellomo, Rosa Grazia;
2014
Abstract
Aims: To evaluate the in vitro effects of extremely low-frequency magnetic field (ELF-MF) on growth and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia strains from cystic fibrosis patients. Materials & methods: The motion of selected ions (Fe, Ca, Cu, Zn, Mg, K, Na) was stimulated by the ion resonance effect, then influence on growth and biofilm formation/viability was assessed by spectrophotometry or viability count. Results: Generally, exposure to ELF-MF significantly increased bacterial growth and affected both biofilm formation and viability, although with differences with regard to ions and species considered. Conclusion: Exposure to ELF-MF represents a possible new approach for treatment of biofilm-associated cystic fibrosis lung infections.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.