Since their introduction, modeling tools aimed to architectural design evolved in today’s “digital multi-purpose drawing boards” based on enhanced parametric elements able to originate whole buildings within virtual environments. Semantic splitting and elements topology are features that allow objects to be “intelligent” (i.e. self-aware of what kind of element they are and with whom they can interact), representing this way basics of Building Information Modeling (BIM), a coordinated, consistent and always up to date workflow improved in order to reach higher quality, reliability and cost reductions all over the design process. Even if BIM was originally intended for new architectures, its attitude to store semantic inter-related information can be successfully applied to existing buildings as well, especially if they deserve particular care such as Cultural Heritage sites. BIM engines can easily manage simple parametric geometries, collapsing them to standard primitives connected through hierarchical relationships: however, when components are generated by existing morphologies, for example acquiring point clouds by digital photogrammetry or laser scanning equipment, complex abstractions have to be introduced while remodeling elements by hand, since automatic feature extraction in available software is still not effective. In order to introduce a methodology destined to process point cloud data in a BIM environment with high accuracy, this paper describes some experiences on monumental sites documentation, generated through a plug-in written for Autodesk Revit and codenamed GreenSpider after its capability to layout points in space as if they were nodes of an ideal cobweb.

PARAMETRIC ACCURACY: BUILDING INFORMATION MODELING PROCESS APPLIED TO THE CULTURAL HERITAGE PRESERVATION

Garagnani, S.;
2013

Abstract

Since their introduction, modeling tools aimed to architectural design evolved in today’s “digital multi-purpose drawing boards” based on enhanced parametric elements able to originate whole buildings within virtual environments. Semantic splitting and elements topology are features that allow objects to be “intelligent” (i.e. self-aware of what kind of element they are and with whom they can interact), representing this way basics of Building Information Modeling (BIM), a coordinated, consistent and always up to date workflow improved in order to reach higher quality, reliability and cost reductions all over the design process. Even if BIM was originally intended for new architectures, its attitude to store semantic inter-related information can be successfully applied to existing buildings as well, especially if they deserve particular care such as Cultural Heritage sites. BIM engines can easily manage simple parametric geometries, collapsing them to standard primitives connected through hierarchical relationships: however, when components are generated by existing morphologies, for example acquiring point clouds by digital photogrammetry or laser scanning equipment, complex abstractions have to be introduced while remodeling elements by hand, since automatic feature extraction in available software is still not effective. In order to introduce a methodology destined to process point cloud data in a BIM environment with high accuracy, this paper describes some experiences on monumental sites documentation, generated through a plug-in written for Autodesk Revit and codenamed GreenSpider after its capability to layout points in space as if they were nodes of an ideal cobweb.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2726186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 50
social impact