We investigate complete hypersurfaces with some positive higher order mean curvature in a semi-Riemannian warped product space. Under standard curvature conditions on the ambient space and appropriate constraints on the higher order mean curvatures, we establish rigidity and nonexistence results via Liouville type results and suitable maximum principles related to the divergence of smooth vector fields on a complete noncompact Riemannian manifold. Applications to standard warped product models, like the Schwarzschild, Reissner-Nordström and pseudo-hyperbolic spaces, as well as steady state type spacetimes, are given and a particular study of entire graphs is also presented.
Rigidity and nonexistence of complete hypersurfaces via Liouville type results and other maximum principles, with applications to entire graphs
Molica Bisci G.
;
2023
Abstract
We investigate complete hypersurfaces with some positive higher order mean curvature in a semi-Riemannian warped product space. Under standard curvature conditions on the ambient space and appropriate constraints on the higher order mean curvatures, we establish rigidity and nonexistence results via Liouville type results and suitable maximum principles related to the divergence of smooth vector fields on a complete noncompact Riemannian manifold. Applications to standard warped product models, like the Schwarzschild, Reissner-Nordström and pseudo-hyperbolic spaces, as well as steady state type spacetimes, are given and a particular study of entire graphs is also presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.