Background and Purpose: Therapeutic hypothermia (TH) has become the standard care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic–ischaemic encephalopathy (HIE). Despite the use of TH for HIE, the incidence of mortality and disabilities remains high. Experimental Approach: Nerve growth factor (NGF) is a potent neurotrophin, but clinical use is limited by its pain eliciting effects. CHF6467 is a recombinant modified form of human NGF devoid of algogenic activity (painless NGF). Key Results: In rodent hippocampal slices exposed to oxygen and glucose deprivation, CHF6467 protected neurons from death and reverted neurotransmission impairment when combined with hypothermia. In a model of rat neonatal HIE, intranasal CHF6467 (20 μg kg 1) significantly reduced brain infarct volume versus vehicle when delivered 10 min or 3 h after the insult. CHF6467 (20 and 40 μg kg 1, i.n.), significantly decreased brain infarct volume to a similar extent to TH and when combined, showed a synergistic neuroprotective effect. CHF6467 (20 μg kg 1, i.n.) per se and in combination with hypothermia reversed locomotor coordination impairment (Rotarod test) and memory deficits (Y-maze and novel object recognition test) in the neonatal HIE rat model. Intranasal administration of CHF6467 resulted in meaningful concentrations in the brain, blunted HIE-induced mRNA elevation of brain neuroinflammatory markers and, when combined to TH, significantly counteracted the increase in plasma levels of neurofilament light chain, a peripheral marker of neuroaxonal damage. Conclusion and Implications: CHF6467 administered intranasally is a promising therapy, in combination with TH, for the treatment of HIE.
Beneficial effects of CHF6467, a modified human nerve growth factor, in experimental neonatal hypoxic–ischaemic encephalopathy
Silvia Carloni;Walter Balduini;
2024
Abstract
Background and Purpose: Therapeutic hypothermia (TH) has become the standard care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic–ischaemic encephalopathy (HIE). Despite the use of TH for HIE, the incidence of mortality and disabilities remains high. Experimental Approach: Nerve growth factor (NGF) is a potent neurotrophin, but clinical use is limited by its pain eliciting effects. CHF6467 is a recombinant modified form of human NGF devoid of algogenic activity (painless NGF). Key Results: In rodent hippocampal slices exposed to oxygen and glucose deprivation, CHF6467 protected neurons from death and reverted neurotransmission impairment when combined with hypothermia. In a model of rat neonatal HIE, intranasal CHF6467 (20 μg kg 1) significantly reduced brain infarct volume versus vehicle when delivered 10 min or 3 h after the insult. CHF6467 (20 and 40 μg kg 1, i.n.), significantly decreased brain infarct volume to a similar extent to TH and when combined, showed a synergistic neuroprotective effect. CHF6467 (20 μg kg 1, i.n.) per se and in combination with hypothermia reversed locomotor coordination impairment (Rotarod test) and memory deficits (Y-maze and novel object recognition test) in the neonatal HIE rat model. Intranasal administration of CHF6467 resulted in meaningful concentrations in the brain, blunted HIE-induced mRNA elevation of brain neuroinflammatory markers and, when combined to TH, significantly counteracted the increase in plasma levels of neurofilament light chain, a peripheral marker of neuroaxonal damage. Conclusion and Implications: CHF6467 administered intranasally is a promising therapy, in combination with TH, for the treatment of HIE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.