: Mitochondrial dysfunction is a key event in many pathological conditions, including neurodegenerative processes. When mitochondria are damaged, they release damage-associated molecular patterns (DAMPs) that activate mito-inflammation. The present study assessed mito-inflammation after in vitro oxygen-glucose deprivation as a representation of ischaemia, followed by reoxygenation (OGD/R) of HT22 cells and modulation of the inflammatory response by melatonin. We observed that melatonin prevented mitochondrial structural damage and dysfunction caused by OGD/R. Melatonin reduced oxidative damage and preserved the enzymatic activity for complexes I, III and IV, encoded by mitochondrial DNA, which were reduced by OGD/R. No effect was observed on complex II activity encoded by nuclear DNA. The release of mtDNA into the cytosol was also prevented with a consequent reduction of the cGAS-STING pathway and IFNβ and IL-6 production. Interestingly, melatonin also increased the early release of the fibroblast growth factor-21 (FGF-21), a mitokine secreted in response to mitochondrial stress. These data indicate that melatonin reduces mito-inflammation and modulates FGF-21 release, further highlighting the key role of this molecule in preserving mitochondrial integrity in OGD/R deprivation-type ischaemic brain injury.

Melatonin Reduces Mito-Inflammation in Ischaemic Hippocampal HT22 Cells and Modulates the cGAS–STING Cytosolic DNA Sensing Pathway and FGF21 Release

Carloni, Silvia;Nasoni, Maria Gemma;Casabianca, Anna;Orlandi, Chiara;Cerioni, Liana;Burattini, Sabrina;Benedetti, Serena;Balduini, Walter
;
Luchetti, Francesca
2024

Abstract

: Mitochondrial dysfunction is a key event in many pathological conditions, including neurodegenerative processes. When mitochondria are damaged, they release damage-associated molecular patterns (DAMPs) that activate mito-inflammation. The present study assessed mito-inflammation after in vitro oxygen-glucose deprivation as a representation of ischaemia, followed by reoxygenation (OGD/R) of HT22 cells and modulation of the inflammatory response by melatonin. We observed that melatonin prevented mitochondrial structural damage and dysfunction caused by OGD/R. Melatonin reduced oxidative damage and preserved the enzymatic activity for complexes I, III and IV, encoded by mitochondrial DNA, which were reduced by OGD/R. No effect was observed on complex II activity encoded by nuclear DNA. The release of mtDNA into the cytosol was also prevented with a consequent reduction of the cGAS-STING pathway and IFNβ and IL-6 production. Interestingly, melatonin also increased the early release of the fibroblast growth factor-21 (FGF-21), a mitokine secreted in response to mitochondrial stress. These data indicate that melatonin reduces mito-inflammation and modulates FGF-21 release, further highlighting the key role of this molecule in preserving mitochondrial integrity in OGD/R deprivation-type ischaemic brain injury.
File in questo prodotto:
File Dimensione Formato  
Carloni et al., J Cellular Molecular Medi - 2024.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2749011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact