: Efficient and sustainable methods for large-scale PFAS monitoring are critical for addressing environmental and public health challenges. This work presents a high-throughput sample preparation system capable of processing up to 48 samples simultaneously using solid-phase microextraction (SPME) and was directly coupled with mass spectrometry (MS) via an automated microfluidic open interface (MOI), bypassing the need for chromatographic separation. The SPME-MOI-MS approach achieves sensitive detection of 18 PFAS in drinking water, with limits of detection (LODs) between 1 and 10 pg/mL, using just 1.5 mL of sample and an average analysis time of 2.8 min per sample. The SPME blades, employed to enhance sensitivity in place of standard SPME fibers, incorporate a matrix-compatible coating material that enables effective PFAS screening in water as well as complex matrices including blood, beer, and beef. In addition, significantly low recovery and reproducibility of nonpolar PFAS in water analysis have been found and studied, indicating that using a glass container and adding a small percentage of acetonitrile can address this issue.
High-Throughput Screening of Polyfluoroalkyl Substances Using Solid-Phase Microextraction Coupled to Microfluidic Open Interface-Mass Spectrometry
Dutt, Malvika;Cappiello, Achille;
2025
Abstract
: Efficient and sustainable methods for large-scale PFAS monitoring are critical for addressing environmental and public health challenges. This work presents a high-throughput sample preparation system capable of processing up to 48 samples simultaneously using solid-phase microextraction (SPME) and was directly coupled with mass spectrometry (MS) via an automated microfluidic open interface (MOI), bypassing the need for chromatographic separation. The SPME-MOI-MS approach achieves sensitive detection of 18 PFAS in drinking water, with limits of detection (LODs) between 1 and 10 pg/mL, using just 1.5 mL of sample and an average analysis time of 2.8 min per sample. The SPME blades, employed to enhance sensitivity in place of standard SPME fibers, incorporate a matrix-compatible coating material that enables effective PFAS screening in water as well as complex matrices including blood, beer, and beef. In addition, significantly low recovery and reproducibility of nonpolar PFAS in water analysis have been found and studied, indicating that using a glass container and adding a small percentage of acetonitrile can address this issue.File | Dimensione | Formato | |
---|---|---|---|
zhou-et-al-2025-high-throughput-screening-of-polyfluoroalkyl-substances-using-solid-phase-microextraction-coupled-to.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
3.87 MB
Formato
Adobe PDF
|
3.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.