: Kidney dialysis is the most widespread treatment method for end-stage renal disease, a debilitating health condition common in industrialized societies. While ubiquitous, kidney dialysis suffers from an inability to remove larger toxins, resulting in a gradual buildup of these toxins in dialysis patients, ultimately leading to further health complications. To improve dialysis, hollow fibers incorporating a cell-monolayer with cultured kidney cells have been proposed; however, the design of such a fiber is nontrivial. In particular, the effects of fluid wall-shear stress have an important influence on the ability of the cell layer to transport toxins. In the present work, we introduce a model for cell-transport aided dialysis, incorporating the effects of the shear stress. We analyze the model mathematically and establish its well-posedness. We then present a series of numerical results, which suggest that a hollow-fiber design with a wavy profile may increase the efficiency of the dialysis treatment. We investigate numerically the shape of the wavy channel to maximize the toxin clearance. These results demonstrate the potential for the use of computational models in the study and advancement of renal therapies.

A multi-domain shear-stress dependent diffusive model of cell transport-aided dialysis: analysis and simulation

Viguerie, Alex
;
Veneziani, Alessandro;
2021

Abstract

: Kidney dialysis is the most widespread treatment method for end-stage renal disease, a debilitating health condition common in industrialized societies. While ubiquitous, kidney dialysis suffers from an inability to remove larger toxins, resulting in a gradual buildup of these toxins in dialysis patients, ultimately leading to further health complications. To improve dialysis, hollow fibers incorporating a cell-monolayer with cultured kidney cells have been proposed; however, the design of such a fiber is nontrivial. In particular, the effects of fluid wall-shear stress have an important influence on the ability of the cell layer to transport toxins. In the present work, we introduce a model for cell-transport aided dialysis, incorporating the effects of the shear stress. We analyze the model mathematically and establish its well-posedness. We then present a series of numerical results, which suggest that a hollow-fiber design with a wavy profile may increase the efficiency of the dialysis treatment. We investigate numerically the shape of the wavy channel to maximize the toxin clearance. These results demonstrate the potential for the use of computational models in the study and advancement of renal therapies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2754801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact