We introduce intrinsic Sobolev-Slobodeckij spaces for a class of ultra-parabolic Kolmogorov type operators satisfying the weak Hormander condition. We prove continuous embeddings into Lorentz and intrinsic Holder spaces. We also prove approximation and interpolation inequalities by means of an intrinsic Taylor expansion, extending analogous results for Holder spaces. The embedding at first order is proved by adapting a method by Luc Tartar which only exploits scaling properties of the intrinsic quasi-norm, while for higher orders we use uniform kernel estimates.

Sobolev embeddings for kinetic Fokker-Planck equations

Pesce, Antonello
2024

Abstract

We introduce intrinsic Sobolev-Slobodeckij spaces for a class of ultra-parabolic Kolmogorov type operators satisfying the weak Hormander condition. We prove continuous embeddings into Lorentz and intrinsic Holder spaces. We also prove approximation and interpolation inequalities by means of an intrinsic Taylor expansion, extending analogous results for Holder spaces. The embedding at first order is proved by adapting a method by Luc Tartar which only exploits scaling properties of the intrinsic quasi-norm, while for higher orders we use uniform kernel estimates.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123624000326-main.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 599.44 kB
Formato Adobe PDF
599.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2763420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact