We consider the Cauchy problem for a linear stochastic partial differential equation. By extending the parametrix method for PDEs whose coefficients are only measurable with respect to the time variable, we prove existence, regularity in Hölder classes and estimates from above and below of the fundamental solution. This result is applied to SPDEs by means of the Itô–Wentzell formula, through a random change of variables which transforms the SPDE into a PDE with random coefficients.

The parametrix method for parabolic SPDEs

Pesce A.
2020

Abstract

We consider the Cauchy problem for a linear stochastic partial differential equation. By extending the parametrix method for PDEs whose coefficients are only measurable with respect to the time variable, we prove existence, regularity in Hölder classes and estimates from above and below of the fundamental solution. This result is applied to SPDEs by means of the Itô–Wentzell formula, through a random change of variables which transforms the SPDE into a PDE with random coefficients.
File in questo prodotto:
File Dimensione Formato  
R1.pdf

accesso aperto

Tipologia: Versione referata/accettata
Licenza: Creative commons
Dimensione 542.69 kB
Formato Adobe PDF
542.69 kB Adobe PDF Visualizza/Apri
1-s2.0-S0304414918302138-main.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Pubblico con Copyright
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2763425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact