Vitamin E (as α-tocopherol, α-T) is proposed to alleviate glia-mediated inflammation in neurological diseases, but such a role in epilepsy is still elusive. This study investigated the effect of α-T supplementation on glial activation, neuronal cell death and oxidative stress of rat brain exposed to kainate-induced seizures. Animals were fed for 2 weeks with a α-T-enriched diet (estimated intake of 750 mg/kg/day) before undergoing status epilepticus. Compliance to supplementation was demonstrated by the remarkable increase in brain α-T. Four days after seizure, brain α-T returned to baseline and lipid peroxidation markers decreased as compared to non-supplemented rats. Status epilepticus induced a lower up-regulation of astrocytic and microglial antigens (GFAP and MHC II, respectively) and production of pro-inflammatory cytokines (IL-1β and TNF-α) in supplemented than in non-supplemented animals. This anti-inflammatory effect was associated with a lower neuronal cell death. In conclusion, α-T dietary supplementation prevents oxidative stress, neuroglial over-activation and cell death occurring after kainate-induced seizures. This evidence paves the way to an anti-inflammatory and neuroprotective role of α-T interventions in epilepsy.

Dietary supplementation with alpha-tocopherol reducesneuroinflammation and neuronal degeneration in the rat brainafter kainic acid-induced status epilepticus.

BETTI, MICHELE;MINELLI, ANDREA;AMBROGINI, PATRIZIA;CIUFFOLI, STEFANO;GALLI, FRANCESCO;CANONICO, BARBARA;LATTANZI, DAVIDE;COLOMBO, EVELIN;SESTILI, PIERO;CUPPINI, RICCARDO
2011

Abstract

Vitamin E (as α-tocopherol, α-T) is proposed to alleviate glia-mediated inflammation in neurological diseases, but such a role in epilepsy is still elusive. This study investigated the effect of α-T supplementation on glial activation, neuronal cell death and oxidative stress of rat brain exposed to kainate-induced seizures. Animals were fed for 2 weeks with a α-T-enriched diet (estimated intake of 750 mg/kg/day) before undergoing status epilepticus. Compliance to supplementation was demonstrated by the remarkable increase in brain α-T. Four days after seizure, brain α-T returned to baseline and lipid peroxidation markers decreased as compared to non-supplemented rats. Status epilepticus induced a lower up-regulation of astrocytic and microglial antigens (GFAP and MHC II, respectively) and production of pro-inflammatory cytokines (IL-1β and TNF-α) in supplemented than in non-supplemented animals. This anti-inflammatory effect was associated with a lower neuronal cell death. In conclusion, α-T dietary supplementation prevents oxidative stress, neuroglial over-activation and cell death occurring after kainate-induced seizures. This evidence paves the way to an anti-inflammatory and neuroprotective role of α-T interventions in epilepsy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11576/2508310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 30
social impact