A brief training in a pool maze, with or without cognitive tasks, modifies the synaptogenesis and maturation of newborn neurons in adult rat dentate gyrus. These types of trainings have many aspects, including physical activity and exploration. Therefore, to evaluate whether physical exercise and environment exploration are able to affect synapse formation and the maturation of adult-generated neurons, GFP-retrovirus infusion was performed on rats which, on the fourth day after injection, were housed under running conditions or allowed to explore an enriched environment briefly in the absence of exercise for the following three days. Afterward, at the end of the trainings, electrophysiological and morphological studies were conducted. Considering that neurotrophic factors increase after exercise or environment exploration, hippocampal BDNF levels and TrkB receptor activation were evaluated. In this study, we show that both spontaneous physical activity and enriched environment exploration induced synaptogenesis and T-type voltage-dependent Ca(2+) currents in very immature neurons. Hippocampal BDNF levels and TrkB receptor activation were determined to be increasing following physical activity and exploration. A possible contribution of BDNF signaling in mediating the observed effects was supported by the use of 7-8-dihydroxyflavone, a selective TrkB agonist, and of ANA-12, an inhibitor of TrkB receptors.

Physical exercise and environment exploration affect synaptogenesis in adult-generated neurons in the rat dentate gyrus: Possible role of BDNF.

AMBROGINI, PATRIZIA;LATTANZI, DAVIDE;CIUFFOLI, STEFANO;BETTI, MICHELE;FANELLI, MIRCO;CUPPINI, RICCARDO
2013

Abstract

A brief training in a pool maze, with or without cognitive tasks, modifies the synaptogenesis and maturation of newborn neurons in adult rat dentate gyrus. These types of trainings have many aspects, including physical activity and exploration. Therefore, to evaluate whether physical exercise and environment exploration are able to affect synapse formation and the maturation of adult-generated neurons, GFP-retrovirus infusion was performed on rats which, on the fourth day after injection, were housed under running conditions or allowed to explore an enriched environment briefly in the absence of exercise for the following three days. Afterward, at the end of the trainings, electrophysiological and morphological studies were conducted. Considering that neurotrophic factors increase after exercise or environment exploration, hippocampal BDNF levels and TrkB receptor activation were evaluated. In this study, we show that both spontaneous physical activity and enriched environment exploration induced synaptogenesis and T-type voltage-dependent Ca(2+) currents in very immature neurons. Hippocampal BDNF levels and TrkB receptor activation were determined to be increasing following physical activity and exploration. A possible contribution of BDNF signaling in mediating the observed effects was supported by the use of 7-8-dihydroxyflavone, a selective TrkB agonist, and of ANA-12, an inhibitor of TrkB receptors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2575580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 44
social impact