Vitamin E (as α-tocopherol, α-T) was shown to have beneficial effects in epilepsy, mainly ascribed to its antioxidant properties. Besides radical-induced neurotoxicity, neuroinflammation is also involved in the pathophysiology of epilepsy, since neuroglial activation and cytokine production exacerbate seizure-induced neurotoxicity and contribute to epileptogenesis. We previously showed that α-T oral supplementation before inducing status epilepticus, markedly reduces astrocytic and microglial activation, neuronal cell death and oxidative stress in the hippocampus, as observed 4 days after seizure. In order to evaluate the possibility that such a neuroprotective and anti-inflammatory effect may also provide a strategy for an acute intervention in epilepsy, in this study, seizures were induced by single intaperitoneal injection of kainic acid and, starting from 3 h after status epilepticus, rats were treated with an intraperitoneal bolus of α-T (250 mg/kg b.w.; once a day) for 4 days, that was the time after which morphological and biochemical analyses were performed on hippocampus. Post-seizure α-T administration significantly reduced astrocytosis and microglia activation, and decreased neuron degeneration and spine loss; these effects were associated with the presence of a lowered lipid peroxidation in hippocampus. These results confirm and further emphasize the anti-inflammatory and neuroprotective role of α-T in kainic acid-induced epilepsy. Moreover, the findings show that post-seizure treatment with α-T provides an effective secondary prevention against post-seizure inflammation-induced brain damages and possibly against their epileptogenic effects.

Post-Seizure α-Tocopherol Treatment Decreases Neuroinflammation and Neuronal Degeneration Induced by Status Epilepticus in Rat Hippocampus.

AMBROGINI, PATRIZIA;MINELLI, ANDREA;GALATI, CLAUDIA;BETTI, MICHELE;LATTANZI, DAVIDE;CUPPINI, RICCARDO
2014

Abstract

Vitamin E (as α-tocopherol, α-T) was shown to have beneficial effects in epilepsy, mainly ascribed to its antioxidant properties. Besides radical-induced neurotoxicity, neuroinflammation is also involved in the pathophysiology of epilepsy, since neuroglial activation and cytokine production exacerbate seizure-induced neurotoxicity and contribute to epileptogenesis. We previously showed that α-T oral supplementation before inducing status epilepticus, markedly reduces astrocytic and microglial activation, neuronal cell death and oxidative stress in the hippocampus, as observed 4 days after seizure. In order to evaluate the possibility that such a neuroprotective and anti-inflammatory effect may also provide a strategy for an acute intervention in epilepsy, in this study, seizures were induced by single intaperitoneal injection of kainic acid and, starting from 3 h after status epilepticus, rats were treated with an intraperitoneal bolus of α-T (250 mg/kg b.w.; once a day) for 4 days, that was the time after which morphological and biochemical analyses were performed on hippocampus. Post-seizure α-T administration significantly reduced astrocytosis and microglia activation, and decreased neuron degeneration and spine loss; these effects were associated with the presence of a lowered lipid peroxidation in hippocampus. These results confirm and further emphasize the anti-inflammatory and neuroprotective role of α-T in kainic acid-induced epilepsy. Moreover, the findings show that post-seizure treatment with α-T provides an effective secondary prevention against post-seizure inflammation-induced brain damages and possibly against their epileptogenic effects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11576/2588578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact