In this paper we consider some nonlocal fractional equations driven by the fractional Laplace operator and depending on a real parameter. Under two different types of conditions on the nonlinearity, by using a famous critical point theorem in the presence of splitting established by Brezis and Nirenberg, we obtain the existence of at least two nontrivial weak solutions for our problem.

A Brezis-Nirenberg splitting approach for nonlocal fractional problems

Molica Bisci Giovanni
;
Servadei Raffaella
2015

Abstract

In this paper we consider some nonlocal fractional equations driven by the fractional Laplace operator and depending on a real parameter. Under two different types of conditions on the nonlinearity, by using a famous critical point theorem in the presence of splitting established by Brezis and Nirenberg, we obtain the existence of at least two nontrivial weak solutions for our problem.
File in questo prodotto:
File Dimensione Formato  
molicabisci-servadeiNA2015.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 454 kB
Formato Adobe PDF
454 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MolicaBisciServadei-NA15-post-print.pdf

accesso aperto

Tipologia: Versione referata/accettata
Licenza: Creative commons
Dimensione 721.13 kB
Formato Adobe PDF
721.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2626826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 32
social impact