In this paper we consider some nonlocal fractional equations driven by the fractional Laplace operator and depending on a real parameter. Under two different types of conditions on the nonlinearity, by using a famous critical point theorem in the presence of splitting established by Brezis and Nirenberg, we obtain the existence of at least two nontrivial weak solutions for our problem.
A Brezis-Nirenberg splitting approach for nonlocal fractional problems
Molica Bisci Giovanni
;Servadei Raffaella
2015
Abstract
In this paper we consider some nonlocal fractional equations driven by the fractional Laplace operator and depending on a real parameter. Under two different types of conditions on the nonlinearity, by using a famous critical point theorem in the presence of splitting established by Brezis and Nirenberg, we obtain the existence of at least two nontrivial weak solutions for our problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
molicabisci-servadeiNA2015.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
454 kB
Formato
Adobe PDF
|
454 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MolicaBisciServadei-NA15-post-print.pdf
accesso aperto
Tipologia:
Versione referata/accettata
Licenza:
Creative commons
Dimensione
721.13 kB
Formato
Adobe PDF
|
721.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.