The environmental DNA (eDNA) metabarcoding represents a new promising tool for biomonitoring and environmental impact assessment. One of the main advantages of eDNA metabarcoding, compared to the traditional morphotaxonomy-based methods, is to provide a more holistic biodiversity information that includes inconspicuous morphologically non-identifiable taxa. Here, we use eDNA metabarcoding to survey marine biodiversity in the vicinity of the three offshore gas platforms in North Adriatic Sea (Italy). We isolated eDNA from 576 water and sediment samples collected at 32 sampling sites situated along four axes at increasing distances from the gas platforms. We obtained about 46 million eDNA sequences for 5 markers from nuclear 18S V1V2, 18S V4, 18S 37F and mitochondrial 16S and COI genes that cover a wide diversity of benthic and planktonic eukaryotes. Our results showed some impact of platform activities on benthic and pelagic communities at very close distance (<50 m), while communities for intermediate (125 m, 250 m, 500 m) and reference (1000 m, 2000 m) sites did not show any particular biodiversity changes that could be related to platforms activities. The most significant community change along the distance gradient was obtained with the 18S V1V2 marker targeting benthic eukaryotes, even though other markers showed similar trends, but to a lesser extent. These results were congruent with the AMBI index inferred from the eDNA sequences assigned to benthic macrofauna. We finally explored the relation between various physicochemical parameters, including hydrocarbons, on benthic community in the case of one of the platforms. Our results showed that these communities were not significantly impacted by most of hydrocarbons, but rather by macro-elements and sediment texture.
Multi-marker eDNA metabarcoding survey to assess the environmental impact of three offshore gas platforms in the North Adriatic Sea (Italy)
Frontalini, Fabrizio;
2019
Abstract
The environmental DNA (eDNA) metabarcoding represents a new promising tool for biomonitoring and environmental impact assessment. One of the main advantages of eDNA metabarcoding, compared to the traditional morphotaxonomy-based methods, is to provide a more holistic biodiversity information that includes inconspicuous morphologically non-identifiable taxa. Here, we use eDNA metabarcoding to survey marine biodiversity in the vicinity of the three offshore gas platforms in North Adriatic Sea (Italy). We isolated eDNA from 576 water and sediment samples collected at 32 sampling sites situated along four axes at increasing distances from the gas platforms. We obtained about 46 million eDNA sequences for 5 markers from nuclear 18S V1V2, 18S V4, 18S 37F and mitochondrial 16S and COI genes that cover a wide diversity of benthic and planktonic eukaryotes. Our results showed some impact of platform activities on benthic and pelagic communities at very close distance (<50 m), while communities for intermediate (125 m, 250 m, 500 m) and reference (1000 m, 2000 m) sites did not show any particular biodiversity changes that could be related to platforms activities. The most significant community change along the distance gradient was obtained with the 18S V1V2 marker targeting benthic eukaryotes, even though other markers showed similar trends, but to a lesser extent. These results were congruent with the AMBI index inferred from the eDNA sequences assigned to benthic macrofauna. We finally explored the relation between various physicochemical parameters, including hydrocarbons, on benthic community in the case of one of the platforms. Our results showed that these communities were not significantly impacted by most of hydrocarbons, but rather by macro-elements and sediment texture.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.