The Aptian-Albian boundary is marked by one of the major oceanic perturbations during the Cretaceous, called Oceanic Anoxic Event (OAE) 1b. Extensive volcanic episodes at the Southern Kerguelen Plateau has been suggested as the trigger of OAE1b, but compelling evidence remains lacking. Here, we reconstructed the temporal variations of marine Os isotopic ratios across the Aptian-Albian boundary in the Tethyan and Pacific pelagic sedimentary records to elucidate the causal links between OAE1b, the biotic turnover, and volcanic episodes. Our new Os isotopic records show two negative spikes that correlate with a period of planktonic foraminiferal turnover across the Aptian-Albian boundary during OAE1b and suggest multiple submarine volcanic events. By comparing our Os isotopic profile with carbon isotopic compositions of carbonate, CaCO3 content, and the relative abundances of agglutinated foraminifera, we conclude that ocean acidification caused by the massive release of CO2 through extensive volcanic episodes could have promoted the major planktonic foraminiferal turnover during OAE1b.

Marine Os isotopic evidence for multiple volcanic episodes during Cretaceous Oceanic Anoxic Event 1b

Coccioni, Rodolfo;Frontalini, Fabrizio;
2020

Abstract

The Aptian-Albian boundary is marked by one of the major oceanic perturbations during the Cretaceous, called Oceanic Anoxic Event (OAE) 1b. Extensive volcanic episodes at the Southern Kerguelen Plateau has been suggested as the trigger of OAE1b, but compelling evidence remains lacking. Here, we reconstructed the temporal variations of marine Os isotopic ratios across the Aptian-Albian boundary in the Tethyan and Pacific pelagic sedimentary records to elucidate the causal links between OAE1b, the biotic turnover, and volcanic episodes. Our new Os isotopic records show two negative spikes that correlate with a period of planktonic foraminiferal turnover across the Aptian-Albian boundary during OAE1b and suggest multiple submarine volcanic events. By comparing our Os isotopic profile with carbon isotopic compositions of carbonate, CaCO3 content, and the relative abundances of agglutinated foraminifera, we conclude that ocean acidification caused by the massive release of CO2 through extensive volcanic episodes could have promoted the major planktonic foraminiferal turnover during OAE1b.
File in questo prodotto:
File Dimensione Formato  
Matsumoto et al., 2020.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 5.25 MB
Formato Adobe PDF
5.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2679677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact