The parasite protozoan Leishmania, the causative agent of leishmaniasis, includes two subgenera of medical interest: Leishmania (Leishmania) and Leishmania (Viannia). Parasite species detection and characterization is crucial to choose treatment protocols and to monitor the disease evolution. Molecular approaches can speed up and simplify the diagnostic process. In particular, several molecular assays target the mitochondrial DNA minicircle network (kDNA) that characterizes the Leishmania genus. We previously proposed a qPCR assay targeting kDNA, followed by high resolution melt (HRM) analysis (qPCR-ML) to distinguish L. (L.) infantum and L. (L.) amazonensis from L. Viannia species. Successively, this assay has been integrated with other qPCR assays, to differentiate L. (L.) infantum, L. (L.) amazonensis and L. (L.) mexicana. In this work, we tested the applicability of our qPCR-ML assay on L. (L.) donovani, L. (L.) major, L. (L.) tropica and L. (L.) aethiopica, showing that the qPCR-ML assay can also amplify Old World species, different from L. (L.) infantum, with good quantification limits (1 × 10-4-1 × 10-6 ng/pcr tube). Moreover, we evaluated 11 L. (L.) infantum strains/isolates, evidencing the variability of the kDNA minicircle target molecules among the strains/isolates of the same species, and pointing out the possibility of quantification using different strains as reference. Taken together, these data account for the consideration of qPCR-ML as a quantitative pan-Leishmania assay.

Evaluation of a kDNA-Based qPCR Assay for the Detection and Quantification of Old World Leishmania Species

Ceccarelli, Marcello;Buffi, Gloria;Diotallevi, Aurora;Andreoni, Francesca;Bencardino, Daniela;Magnani, Mauro;Galluzzi, Luca
2020

Abstract

The parasite protozoan Leishmania, the causative agent of leishmaniasis, includes two subgenera of medical interest: Leishmania (Leishmania) and Leishmania (Viannia). Parasite species detection and characterization is crucial to choose treatment protocols and to monitor the disease evolution. Molecular approaches can speed up and simplify the diagnostic process. In particular, several molecular assays target the mitochondrial DNA minicircle network (kDNA) that characterizes the Leishmania genus. We previously proposed a qPCR assay targeting kDNA, followed by high resolution melt (HRM) analysis (qPCR-ML) to distinguish L. (L.) infantum and L. (L.) amazonensis from L. Viannia species. Successively, this assay has been integrated with other qPCR assays, to differentiate L. (L.) infantum, L. (L.) amazonensis and L. (L.) mexicana. In this work, we tested the applicability of our qPCR-ML assay on L. (L.) donovani, L. (L.) major, L. (L.) tropica and L. (L.) aethiopica, showing that the qPCR-ML assay can also amplify Old World species, different from L. (L.) infantum, with good quantification limits (1 × 10-4-1 × 10-6 ng/pcr tube). Moreover, we evaluated 11 L. (L.) infantum strains/isolates, evidencing the variability of the kDNA minicircle target molecules among the strains/isolates of the same species, and pointing out the possibility of quantification using different strains as reference. Taken together, these data account for the consideration of qPCR-ML as a quantitative pan-Leishmania assay.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11576/2681520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact