For nondeterministic and probabilistic processes, the validity of some desirable properties of probabilistic trace semantics depends both on the class of schedulers used to resolve nondeterminism and on the capability of suitably limiting the power of the considered schedulers. Inclusion of probabilistic bisimilarity, compositionality with respect to typical process operators, and backward compatibility with trace semantics over fully nondeterministic or fully probabilistic processes, can all be achieved by restricting to coherent resolutions of nondeterminism. Here we provide alternative characterizations of probabilistic trace post-equivalence and pre-equivalence in the case of coherent resolutions. The characterization of the former is based on fully coherent trace distributions, whereas the characterization of the latter relies on coherent weighted trace sets.
Alternative Characterizations of Probabilistic Trace Equivalences on Coherent Resolutions of Nondeterminism
Bernardo, Marco
2020
Abstract
For nondeterministic and probabilistic processes, the validity of some desirable properties of probabilistic trace semantics depends both on the class of schedulers used to resolve nondeterminism and on the capability of suitably limiting the power of the considered schedulers. Inclusion of probabilistic bisimilarity, compositionality with respect to typical process operators, and backward compatibility with trace semantics over fully nondeterministic or fully probabilistic processes, can all be achieved by restricting to coherent resolutions of nondeterminism. Here we provide alternative characterizations of probabilistic trace post-equivalence and pre-equivalence in the case of coherent resolutions. The characterization of the former is based on fully coherent trace distributions, whereas the characterization of the latter relies on coherent weighted trace sets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.