Uhle's ketone and its derivatives are highly versatile intermediates for the synthesis of a variety of 3,4-fused tricyclic indole frameworks, i.e. indole alkaloids of the ergot family, that are found in various bioactive natural products and pharmaceuticals. Therefore, the development of a convenient preparative method for this structural motif as well as its opportune/useful derivatization have been the subject of longstanding interest in the fields of synthetic organic chemistry and medicinal chemistry. Herein, we summarize recent and less recent methods for the preparation of Uhle's ketone and its derivatives as well as its main reactivity towards the synthesis of bioactive substances. Regarding the preparation, it can be roughly classified into two categories: (a) using 4-unfunctionalized and 4-functionalized indole derivatives as starting materials to construct a fused six-member ring, and (b) constructing the indole ring through intramolecular cycloaddition. Principally, the reactivity of the cyclic Uhle's ketone shown here is derived from the classical electrophilicity of the carbonyl carbon or the acidity of the alpha-hydrogen and, though less intensively investigated, chemical reactions that induce ring expansion to form novel ring skeletons.

Synthesis and Reactivity of Uhle’s Ketone and Its Derivatives

Piersanti, Giovanni;Bartoccini, Francesca
2021

Abstract

Uhle's ketone and its derivatives are highly versatile intermediates for the synthesis of a variety of 3,4-fused tricyclic indole frameworks, i.e. indole alkaloids of the ergot family, that are found in various bioactive natural products and pharmaceuticals. Therefore, the development of a convenient preparative method for this structural motif as well as its opportune/useful derivatization have been the subject of longstanding interest in the fields of synthetic organic chemistry and medicinal chemistry. Herein, we summarize recent and less recent methods for the preparation of Uhle's ketone and its derivatives as well as its main reactivity towards the synthesis of bioactive substances. Regarding the preparation, it can be roughly classified into two categories: (a) using 4-unfunctionalized and 4-functionalized indole derivatives as starting materials to construct a fused six-member ring, and (b) constructing the indole ring through intramolecular cycloaddition. Principally, the reactivity of the cyclic Uhle's ketone shown here is derived from the classical electrophilicity of the carbonyl carbon or the acidity of the alpha-hydrogen and, though less intensively investigated, chemical reactions that induce ring expansion to form novel ring skeletons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11576/2689976
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact