By exploiting an old idea first used by Pizzetti for the classical Laplacian, we introduce a notion of asymptotic average solutions making pointwise solvable every Poisson equation Lu(x) = -f(x) with continuous data f, where L is a hypoelliptic linear partial differential operator with positive semidefinite characteristic form.

Asymptotic Average Solutions to Linear Second Order Semi-Elliptic PDEs: A Pizzetti-Type Theorem

Kogoj, Alessia E.
;
2024

Abstract

By exploiting an old idea first used by Pizzetti for the classical Laplacian, we introduce a notion of asymptotic average solutions making pointwise solvable every Poisson equation Lu(x) = -f(x) with continuous data f, where L is a hypoelliptic linear partial differential operator with positive semidefinite characteristic form.
File in questo prodotto:
File Dimensione Formato  
KL_asymptotic.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 253.04 kB
Formato Adobe PDF
253.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2209.08394.pdf

accesso aperto

Tipologia: Versione pre-print
Licenza: Creative commons
Dimensione 164.11 kB
Formato Adobe PDF
164.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2713111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact