By exploiting an old idea first used by Pizzetti for the classical Laplacian, we introduce a notion of asymptotic average solutions making pointwise solvable every Poisson equation Lu(x) = -f(x) with continuous data f, where L is a hypoelliptic linear partial differential operator with positive semidefinite characteristic form.
Asymptotic Average Solutions to Linear Second Order Semi-Elliptic PDEs: A Pizzetti-Type Theorem
Kogoj, Alessia E.
;
2023
Abstract
By exploiting an old idea first used by Pizzetti for the classical Laplacian, we introduce a notion of asymptotic average solutions making pointwise solvable every Poisson equation Lu(x) = -f(x) with continuous data f, where L is a hypoelliptic linear partial differential operator with positive semidefinite characteristic form.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
KL_asymptotic.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
253.04 kB
Formato
Adobe PDF
|
253.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2209.08394.pdf
accesso aperto
Tipologia:
Versione pre-print
Licenza:
Creative commons
Dimensione
164.11 kB
Formato
Adobe PDF
|
164.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.