The humoral response after vaccination was evaluated in 1248 individuals who received different COVID-19 vaccine schedules. The study compared subjects primed with adenoviral ChAdOx1-S (ChAd) and boosted with BNT162b2 (BNT) mRNA vaccines (ChAd/BNT) to homologous dosing with BNT/BNT or ChAd/ChAd vaccines. Serum samples were collected at two, four and six months after vaccination, and anti-Spike IgG responses were determined. The heterologous vaccination induced a more robust immune response than the two homologous vaccinations. ChAd/BNT induced a stronger immune response than ChAd/ChAd at all time points, whereas the differences between ChAd/BNT and BNT/BNT decreased over time and were not significant at six months. Furthermore, the kinetic parameters associated with IgG decay were estimated by applying a first-order kinetics equation. ChAd/BNT vaccination was associated with the longest time of anti-S IgG negativization and with a slow decay of the titer over time. Finally, analyzing factors influencing the immune response by ANCOVA analysis, it was found that the vaccine schedule had a significant impact on both the IgG titer and kinetic parameters, and having a Body Mass Index (BMI) above the overweight threshold was associated with an impaired immune response. Overall, the heterologous ChAd/BNT vaccination may offer longer-lasting protection against SARS-CoV-2 than homologous vaccination strategies.

Comparing Heterologous and Homologous {COVID}-19 Vaccination: A Longitudinal Study of Antibody Decay

Chiara Orlandi;Giuseppe Stefanetti;Gloria Buffi;Aurora Diotallevi;Marcello Ceccarelli;Daniela Vandini;Mauro Magnani;Luca Galluzzi;Anna Casabianca
2023

Abstract

The humoral response after vaccination was evaluated in 1248 individuals who received different COVID-19 vaccine schedules. The study compared subjects primed with adenoviral ChAdOx1-S (ChAd) and boosted with BNT162b2 (BNT) mRNA vaccines (ChAd/BNT) to homologous dosing with BNT/BNT or ChAd/ChAd vaccines. Serum samples were collected at two, four and six months after vaccination, and anti-Spike IgG responses were determined. The heterologous vaccination induced a more robust immune response than the two homologous vaccinations. ChAd/BNT induced a stronger immune response than ChAd/ChAd at all time points, whereas the differences between ChAd/BNT and BNT/BNT decreased over time and were not significant at six months. Furthermore, the kinetic parameters associated with IgG decay were estimated by applying a first-order kinetics equation. ChAd/BNT vaccination was associated with the longest time of anti-S IgG negativization and with a slow decay of the titer over time. Finally, analyzing factors influencing the immune response by ANCOVA analysis, it was found that the vaccine schedule had a significant impact on both the IgG titer and kinetic parameters, and having a Body Mass Index (BMI) above the overweight threshold was associated with an impaired immune response. Overall, the heterologous ChAd/BNT vaccination may offer longer-lasting protection against SARS-CoV-2 than homologous vaccination strategies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2715412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact