Wearable devices have become increasingly popular in recent years, and they offer a great opportunity for sensor-based continuous human activity recognition in real-world scenarios. However, one of the major challenges is their limited battery life. In this study, we propose an energy-aware human activity recognition framework for wearable devices based on a lightweight accurate trigger. The trigger acts as a binary classifier capable of recognizing, with maximum accuracy, the presence or absence of one of the interesting activities in the real-time input signal and it is responsible for starting the energy-intensive classification procedure only when needed. The measurement results conducted on a real wearable device show that the proposed approach can reduce energy consumption by up to 95% in realistic case studies, with a cost of performance deterioration of at most 1% or 2% compared to the traditional energy-intensive classification strategy.
Lightweight accurate trigger to reduce power consumption in sensor-based continuous human activity recognition
Emanuele Lattanzi
;Lorenzo Calisti;Paolo Capellacci
2023
Abstract
Wearable devices have become increasingly popular in recent years, and they offer a great opportunity for sensor-based continuous human activity recognition in real-world scenarios. However, one of the major challenges is their limited battery life. In this study, we propose an energy-aware human activity recognition framework for wearable devices based on a lightweight accurate trigger. The trigger acts as a binary classifier capable of recognizing, with maximum accuracy, the presence or absence of one of the interesting activities in the real-time input signal and it is responsible for starting the energy-intensive classification procedure only when needed. The measurement results conducted on a real wearable device show that the proposed approach can reduce energy consumption by up to 95% in realistic case studies, with a cost of performance deterioration of at most 1% or 2% compared to the traditional energy-intensive classification strategy.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1574119223001062-main.pdf
accesso aperto
Descrizione: Accettata
Tipologia:
Versione referata/accettata
Licenza:
Creative commons
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.