Wearable devices have become increasingly popular in recent years, and they offer a great opportunity for sensor-based continuous human activity recognition in real-world scenarios. However, one of the major challenges is their limited battery life. In this study, we propose an energy-aware human activity recognition framework for wearable devices based on a lightweight accurate trigger. The trigger acts as a binary classifier capable of recognizing, with maximum accuracy, the presence or absence of one of the interesting activities in the real-time input signal and it is responsible for starting the energy-intensive classification procedure only when needed. The measurement results conducted on a real wearable device show that the proposed approach can reduce energy consumption by up to 95% in realistic case studies, with a cost of performance deterioration of at most 1% or 2% compared to the traditional energy-intensive classification strategy.

Lightweight accurate trigger to reduce power consumption in sensor-based continuous human activity recognition

Emanuele Lattanzi
;
Lorenzo Calisti;Paolo Capellacci
2023

Abstract

Wearable devices have become increasingly popular in recent years, and they offer a great opportunity for sensor-based continuous human activity recognition in real-world scenarios. However, one of the major challenges is their limited battery life. In this study, we propose an energy-aware human activity recognition framework for wearable devices based on a lightweight accurate trigger. The trigger acts as a binary classifier capable of recognizing, with maximum accuracy, the presence or absence of one of the interesting activities in the real-time input signal and it is responsible for starting the energy-intensive classification procedure only when needed. The measurement results conducted on a real wearable device show that the proposed approach can reduce energy consumption by up to 95% in realistic case studies, with a cost of performance deterioration of at most 1% or 2% compared to the traditional energy-intensive classification strategy.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1574119223001062-main.pdf

accesso aperto

Descrizione: Accettata
Tipologia: Versione referata/accettata
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2723231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact