: This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, with a focus on pharmaceuticals. We employed a clustering strategy to provide a fair assessment of the model performances. By applying the generated model to a set of pharmaceutically relevant molecules, we aim to highlight potential PBT chemicals and extract PBT-relevant substructures. These substructures can serve as structural flags, alerting drug designers to potential environmental issues from the earliest stages of the drug discovery process. Incorporating these findings into pharmaceutical development workflows is expected to drive significant advancements in creating more environmentally friendly drug candidates while preserving their therapeutic efficacy.

Application of Deep Learning to Predict the Persistence, Bioaccumulation, and Toxicity of Pharmaceuticals

Mattia Bernetti;Maria Laura Bolognesi
;
Giovanni Bottegoni
2025

Abstract

: This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, with a focus on pharmaceuticals. We employed a clustering strategy to provide a fair assessment of the model performances. By applying the generated model to a set of pharmaceutically relevant molecules, we aim to highlight potential PBT chemicals and extract PBT-relevant substructures. These substructures can serve as structural flags, alerting drug designers to potential environmental issues from the earliest stages of the drug discovery process. Incorporating these findings into pharmaceutical development workflows is expected to drive significant advancements in creating more environmentally friendly drug candidates while preserving their therapeutic efficacy.
File in questo prodotto:
File Dimensione Formato  
2025_JCIM_Evangelista.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2762891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact