Background: IGF1 is a key regulator of tissue growth and development and has been implicated in the initiation and progression of various cancers, including breast cancer. Through IGF1 mRNA splicing different precursor pro-peptides, i.e., the IGF1Ea, IGF1Eb and IGF1Ec pro-forms, are formed whose biological roles in the pathogenesis of breast cancer have not been established yet. The objective of this study was to assess the biological activity of the IGF1 pro-forms in human breast cancer-derived cells. Methods: The different IGF1 pro-forms were generated through transient transfection of HEK293 cells with the respective vector constructs. The resulting conditioned media were applied in vitro to MCF7, T47D and ZR751 breast cancer-derived cell cultures. The recombinant human IGF1 pro-forms were also tested for their binding affinity to an anti-IGF1 specific antibody by immunoprecipitation. To determine whether the IGF1 pro-forms induce cell proliferation, mature IGF1 was neutralised in HEK293-derived conditioned media. Results: We found that the IGF1 pro-forms were the only forms that were produced intra-cellularly, whereas both mature IGF1 and the IGF1 pro-forms were detected extra-cellularly. We also found that E peptides can impair the IGF1 pro-form binding affinity for the anti-IGF1 antibody and, thus, hamper an accurate measurement of the IGF1 pro-forms. Additionally, we found that the IGF1 antibody can completely inhibit IGF1-induced breast cancer cell proliferation and IGF1 receptor (IGF1R) phosphorylation, wheras the same antibody was found to only partially inhibit the biological activity of the pro-forms. Moreover, we found that the IGF1 pro-form activities can completely be inhibited by neutralising the IGF1R. Finally, we compared the bioactivity of the IGF1 pro-forms to that of mature IGF1, and found that the IGF1 pro-forms were less capable of phosphorylating the IGF1R in the breast cancer-derived cells tested. Conclusions: Our data indicate that IGF1 pro-forms can induce breast cancer cell proliferation via the IGF1R, independent from the mature IGF1 form. These results underline the importance of an accurate assessment of the presence of IGF1 pro-forms within the breast cancer microenvironment.

Human IGF1 pro-forms induce breast cancer cell proliferation via the IGF1 receptor

DE SANTI, MAURO;ANNIBALINI, GIOSUE';BARBIERI, ELENA;VALLORANI, LUCIANA;CONTARELLI, SERENA;BRANDI, GIORGIO
2016

Abstract

Background: IGF1 is a key regulator of tissue growth and development and has been implicated in the initiation and progression of various cancers, including breast cancer. Through IGF1 mRNA splicing different precursor pro-peptides, i.e., the IGF1Ea, IGF1Eb and IGF1Ec pro-forms, are formed whose biological roles in the pathogenesis of breast cancer have not been established yet. The objective of this study was to assess the biological activity of the IGF1 pro-forms in human breast cancer-derived cells. Methods: The different IGF1 pro-forms were generated through transient transfection of HEK293 cells with the respective vector constructs. The resulting conditioned media were applied in vitro to MCF7, T47D and ZR751 breast cancer-derived cell cultures. The recombinant human IGF1 pro-forms were also tested for their binding affinity to an anti-IGF1 specific antibody by immunoprecipitation. To determine whether the IGF1 pro-forms induce cell proliferation, mature IGF1 was neutralised in HEK293-derived conditioned media. Results: We found that the IGF1 pro-forms were the only forms that were produced intra-cellularly, whereas both mature IGF1 and the IGF1 pro-forms were detected extra-cellularly. We also found that E peptides can impair the IGF1 pro-form binding affinity for the anti-IGF1 antibody and, thus, hamper an accurate measurement of the IGF1 pro-forms. Additionally, we found that the IGF1 antibody can completely inhibit IGF1-induced breast cancer cell proliferation and IGF1 receptor (IGF1R) phosphorylation, wheras the same antibody was found to only partially inhibit the biological activity of the pro-forms. Moreover, we found that the IGF1 pro-form activities can completely be inhibited by neutralising the IGF1R. Finally, we compared the bioactivity of the IGF1 pro-forms to that of mature IGF1, and found that the IGF1 pro-forms were less capable of phosphorylating the IGF1R in the breast cancer-derived cells tested. Conclusions: Our data indicate that IGF1 pro-forms can induce breast cancer cell proliferation via the IGF1R, independent from the mature IGF1 form. These results underline the importance of an accurate assessment of the presence of IGF1 pro-forms within the breast cancer microenvironment.
File in questo prodotto:
File Dimensione Formato  
2016 - De Santi CEON.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione editoriale
Licenza: Pubblico con Copyright
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
De Santi MS versione post-print (2).pdf

embargo fino al 23/12/2016

Descrizione: versione post-print
Tipologia: Versione referata/accettata
Licenza: Creative commons
Dimensione 5.14 MB
Formato Adobe PDF
5.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2629057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 24
social impact