We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.
Isometry-invariant solutions to a critical problem on non-compact Riemannian manifolds
Molica Bisci, Giovanni
;Vilasi, Luca
2020
Abstract
We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MoVi(JDE).pdf
accesso aperto
Tipologia:
Versione referata/accettata
Licenza:
Copyright dell'editore
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.