We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.

Isometry-invariant solutions to a critical problem on non-compact Riemannian manifolds

Molica Bisci, Giovanni
;
Vilasi, Luca
2020

Abstract

We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.
File in questo prodotto:
File Dimensione Formato  
MoVi(JDE).pdf

accesso aperto

Tipologia: Versione referata/accettata
Licenza: Copyright dell'editore
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2678527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact